
International Journal o f  Theoretical Physics, Vol. 15, No. 6 (i976), pp. 427-451 

Geometry and Quantization 

D. J. R. LLOYD-EVANS 

Department o f  Mathematics, King's College, London WC2R 2LS 1 

Received: 11 June 1975 

Abstract  

Gravity is treated geometrically in terms of nonlinear realizations of GL (4, ~) with 
particular reference to almost complex structures. This approach is used to carry out a 
Bargmann-Segal type quantization of space-time via the vector and spinor structures of 
the tangent space that formulates the theory of measurement as a quantum theory 
quantized in terms of a basic unit of length that appears in a new uncertainty relation. 
The theory is also used to discuss the gauge conditions for quantum gravity and the 
Kostant theory of quantization applied using a line bundle with structure group 
GL(2, c)/SL(2, c). 

1. Introduction 

This paper is concerned with exploration of the relation between certain 
abstract aspects of quantization and geometry, and with the application of this 
geometry to a formal quantization of space-time and of a part, the trace, of 
the gravitational field. 

There are several motivating factors for this study: 
(1) Geometry enters into free field theory through the commutat ion 

relations. 
(2) If gravity is essentially geometric in nature, then the connection of 

complex and symplectic structures with quantization might be relevant to 
quantum gravity. 

(3) These geometric structures constitute nonlinear realizations of GL(4, ~ ), 
and one such realization has already been shown by Isham et aL (Isham et al., 
197 la) to be helpful for the regularization of divergences of  quantum electro- 
dynamics. 

(4) Complex structures are closely related to spinor structures and hence 
to the Newman-Penrose formalism (Penrose, 1960; Newman and Penrose, 
1962), on which the most successful classical treatments of gravitational 
radiation have been based. 
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(5) In writing manifestly SL(2, C,) covariant wave functions for fields of 
definite mass and spin 1> 1 the actual representation of SL(2,G) is arbitrary, 
but in the presence of interactions the different representations are inequivalent, 

(6) Gravity is a self-interacting field, and since the motivation for its 
quantization comes from the operator character of the right-hand side of the 
Einstein field equations 

when other fields are quantized, then the part of the gravitational field belongs 
to the (0, 0) and (I ,  1) representations of SL(2, C)whilst the curvature of space- 
time renders the usual Fourier decomposition on R 4 inadmissible. 

(7) Changes in topology resulting from quantum fluctuations of the curvature 
require some form of quantization of space-time itself on the scale of the 
Planck length. 

(8) The formalism presented here is relevant to a more general theory by 
the author in which the base space of a fiber bundle enters at a preretativistic 
level. 

As a preliminary to investigation of quantum geometry a brief review of 
gauge invariance approaches to gravity is presented in Section 2 in order to 
justify the use of the formalism adopted here. The most important point made 
is the distinction between two different GL(4, ~) groups, which is vital to the 
subsequent development of the theory. 

With regard to (2), the rigorous geometrization of Bohr-Sommerfeld type 
quantization has been carried out by Kostant (Kostant, 1970b) in terms of the 
curvature of line bundles and the integratity of cohomology classes, whilst the 
idea of field quantization in terms of complex and symplectic structures has 
been considered by Segal in a number of publications (Segal, 1960, 1962, 1963, 
1969) and applied to a rigorous quantization of a free field. Section 3 begins 
with an outline of the basic geometry of these schemes and considers its 
application to the pseudo-Riemannian geometry of spaceAime. This leads to a 
model of a graviton as a nonlinear spinor closely related to the linear Penrose 
spinor, and some comparison is made of this with the gauge conditions 
involved in various approaches to the quantization of gravity, which involves 
some discussion of momentum space orbits for R 4 @GL(4, R) and its 
subgroups. 

The treatment of quantization as a form of analyticity restricts consideration 
of representations of SL(2,C) to those by polynomials which are realized 
geometrically in terms of spinor and tensor bundles. Section 4 contains the 
use of the Bargmann-Segal technique for the quantization of tangent and 
spinor spaces at each point of space-time. Of these, the former essentially 
exhibits the theory of measurement of length as a (formally) quant~ed 
process in which a basic unit of length is introduced in a Lorentz covariant 
fashion; this is accompanied by a new uncertainty principle in which fluctua- 
tions in measurements of lengths in directions mutually conjugate with respect 
to the complex structure determined by the light-cone are of the order of the 
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basic unit. The quantization of spinors gives points and antipoints as the basic 
quanta of geometry with properties resembling spin-l/2 particles. 

A rigorous approach to the group-theoretic gauge conditions required for 
field quantization would involve the application of the Kostant approach to 
space-time regarded as a symplectic manifold, and in Section 5 this is outlined. 
The line bundle involved has standard fiber GL(2 ,C) /SL (2 ,C)  so that the 
integrality condition for quantization is satisfied, but owing to the lack in 
general of globally Harniltonian vector fields the main effect of this is to rewrite 
the familiar problems of quantization in the absence of Killing vector fields in 
a different language. 

2. Gauge Theories 

Before reviewing gauge field descriptions of gravity it must be emphasized 
that following Weinberg's (Weinberg, 1964b) demonstration that gauge in- 
variance and the principle of equivalence are necessary consequences of the 
Lorentz invariance of S-matrix elements for soft helicity two zero mass 
scattering rather than necessarily the source of such particles, it may be that 
geometric concepts have no fundamental significance in relation to gravity. 

Historically gauge fields were first introduced by Weyl for dilatation invariance 
and Lorentz invariance of the vierbein (Weyl, 1918, 1929, 1950) in his attempts 
to extend general relativity, but the first description of gravity itself as a gauge 
field was by Utiyama (Utiyama, 1956). Utiyama derived the field equations of 
general relativity by the Yang-Mills technique for invariance of the Lagrangian 
under homogeneous Lorentz transformations of  the second kind; however, as 
pointed out by Kibble (Kibble, 1961), the metric tensor was introduced 
through the inconsistent use of curvilinear coordinates, whilst the assumption 
of a symmetric connection was made arbitrarily. Kibble overcame these 
defects with an analogous theory of Poincar4 gauge invariance leading to the 
field equations of  general relativity together with additional equations coupling 
torsion to spin as in Weyl's theory (Weyl, 1929, 1950) and the Einstein--Cartan 
theory (Cartan, 1923). The use of R 4 gauge transformations has been subject to 
some criticisms by Trautman (Trautman, 1970), mentioned below, and the 
same author (Trautman, 1972) has also derived the Einstein-Cartan field 
equations by variation of the Lagrangian with respect to affine frames. 

Closely related to the Lorentz invariance approach is the use o f  SL(2,C) 
invariance by Carmeli and Isham (Carmeli, 1972; Isham et al., 1972). Carmeli 
showed how to obtain the Newman-Penrose equations from a Yang--Mills-like 
theory using a quadratic Lagrangian, but with the usual noncovariant Yang- 
Mills field replaced by a covariant field B u formed from the spin coefficients 

ab' 
B .  = at~ Bah' 

where a u are van der Waerden symbols and B spin coefficients. In this the 
dynamical role of the curvilinear coordinates appears slightly obscure, but it 
is manifest in the theory of Isham et al. in which they enter through the 
contracted vierbein L u =- L~aT a which is canonically conjugate to B u with 
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respect to various Lagrangians of  which the simplest is i Tr[L u, L ~] Buy, where 

- - + i B y ]  

The extra spin force of the Weyl theory associated with torsion is not discussed, 
the objective of the work being to generalize SL(2,C) gauge techniques to 
SL(6, C) and f-g mixing. 

A quite different approach due to Isham et aL (Isham et al., 1971b) is to 
try to describe gravitation as due to Goldstone bosons for GL(4, R)/O(1, 3), 
and this had the major result of regularizing divergences of quantum electro- 
dynamics, whilst providing the Einstein field equations. 

The relationship of these theories to the present work can be seen by 
attempting to express them in terms of fiber bundles. The fact that gauge 
theories can be expressed in terms of principal fiber bundles whose structure 
groups are the gauge groups is well known (Lubkin, 1963; Loos, 1965), but 
it is necessary in geometry to distinguish between frame bundles and 
arbitrary principal fiber bundles with isomorphous structure group (Trautman, 
1970), since the bundle space of  the former, but not the tatter, is rigidly 
fixed to the base space by the canonical (or soldering) form. Geometric 
theories of gravity and possible generalizations involving first-order G structures 
are defined in terms of the bundle of  affine frames with structure group 
R4 @ GL(4, R) and its subbundles based on a space M which is locally R 4. 
The canonical form 0(X) for any first-order frame bundle P over M with 
projection rr is defined by 

O(X) = u -1 [Ir(X)], X E  Tu(P), u E P  

where Tu(P ) is the tangent space to the bundle at u and u is considered as a 
linear mapping of R 4 onto T,r(u)(M). O(X) is a tensorial form of type 
(GL(4, R), R 4) and corresponds to a tensor of type (1, 1), which represents 
the field of identity transformations of the tangent spaces Tx(M), x E M. 

A connection form ~ in the bundle P(M) of affine frames with structure 
group R 4 (~) G, where G is either GL(4, ~)  or a closed Lie subgroup, can be 
decomposed into the semidirect Lie algebra sum of the connection form co 
for the corresponding linear bundle and an R4-valued 1-form 4: 

Similarly the curvature form ~ splits as follows: 

~2 = ~ +  D¢ 

where D denotes the horizontal exterior derivative and ® = DO is the torsion 
form. 

The theories of Utiyama and Kibble are both related to the bundle of 
orthonormal affine frames with structure group R 4 (~)SO(l, 3) with the 
components of the Yang-Mills fields Au~ and hu k corresponding to the 
coefficients of the two parts co and ¢ of ~ ,  with Latin indices referring to the 
fiber space and Greek to the base, which these authors took to be flat space- 
time. Utiyama's theory is not internally consistent, whilst in Kibble's theory 
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Trautman's criticism is essentially that the canonical form 0 provides a preferred 
value for ~ and hence (up to a change of parametrization) a set of  values 6u k 
for hu k. In this strictly geometric interpretation hu k defines an arbitrary set of 
coordinates but not a dynamical field. 

As regards GL(4, R), it has been pointed out by Isham that the field 
equations of general relativity are invariant under two distinct GL (4, R) groups, 
one generated by nonsingular infinitesimal Jacobian matrices of general 
coordinate transformations and related to the 1-form 4) as above, and the second 
the group of linear transformations of the basis frames. Formally, breaking of 
either of these symmetries to O(1,3) appears to lead to Goldstone bosons of 
the vierbein gravitational field, but in fact geometrically they are quite distinct; 
there are two major differences, the first being that the general coordinate 
transformations do not contain transformations of the spin frames [or indeed 
other interesting groups of frame transformations such as GL(2, C) or Sp(2, R)] 
whist the frame transformations do, and the second is that the canonical form 
breaks the coordinate transformations down to the identity element without 
influencing the frame transformations. Spinors transform linearly under 
GL(4, R ) coordinate transformations and nonlinearly under the frame group, 
but since the existence of the canonical form means that a change of basis 
frame induces a preferred coordinate transformation it is necessary for linear 
and nonlinear spinor theories to be consistent, and this was shown by Isham 
et aL (Isham et aL, 1971b). 

According to Kobayashi and Nomizu (Kobayashi and Nomizu, t963) a 
Riemannian structure is uniquely determined by a reduction of the bundle of 
general linear frames with group GL(4, R) to that of orthonormal frames 
with group O(4), whilst pseudo-Riemannian structures are obtained apart from 
uniqueness problems due to noncompactness (Isham et aL, 197 lb) by reduc- 
tion to 0(1,3). The gauge theory most directly related to general relativity is 
thus that of GL(4, •)/O(t, 3), and it is well known that the field equations 
can be obtained from contraction of the tensorial version of the Bianchi 
identity D£2 = 0. The effect of introducing SL(2, C) or O(1, 3) gauge trans- 
formations of the second kind is to relax the requirement that the connection 
be the unique Riemannian connection, and it produces Weyl's extended theory, 
which contains torsion (Sciama, 1964). Such gauge transformations on flat 
space were considered by Rodichev (Rodichev, 1961) to give a theory of pure 
torsion whose coupling to a spin-l/2 field formally resembled the four-fermion 
model of the weak interactions. In the covariant versions of the Yang-Mills- 
type theory the process of covariantization is vital to the existence of the 
symmetric part of the connection. The fact that Kibble obtained the same 
field equations as Weyl and Caftan is because it is not always necessary to 
distinguish between a coordinate transformation resulting from a change in the 
base and one due to a change in the affine fiber ~4; however, in extensions of 
the theory and quantization (see this paper) this distinction is important; for 
example, in broken ~4(~)GL(4,R) with Poincar~ gauge invariance of the 
second kind there would be two distinct dynamical vierbein fields were it not 
for the canonical form killing off the dynamical role of the field due to the 
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postulated R 4 invariance and reducing its significance to that of an arbitrary 
set of coordinate transformations. 

This paper shows how reduction of the bundle of linear frames to pseudo- 
orthogonal frames is related to other G structures, notably where G is GL(2,C), 
CO(I, 3), or SL(2,C), and it shows their significance in the theory of quantiza- 
tion. 

3. Quantizability as a Form of Analyticity 

This section is concerned with the treatment of  quantizability as a form of  
analyticity, and it hinges upon the relationship between light-cone and almost 
complex structures. Considerable use of complex structures has already been 
made by Segal (Segal, 1962, 1963, 1969) in an attempt to provide a mathe- 
matically consistent version of quantum field theory. The two main uses adopted 
by Segal were, firstly, in determining representations of C* algebras on the 
space of holomorphic functionals on an infinite (even) dimensional pre- 
Hilbert space, and, more speculatively, to find a form of  quantization applicable 
to nonlinear systems (Segal, 1963). 

In the latter case Segal took the existence of a complex structure on the 
phase space of  the system to be quantized as the fundamental feature. The 
special significance of the complex structure J is that on a 2n real dimensional 
manifold symplectic transformations A obey 

AtjA =J 

and complex transformations satisfy 

AJ =JA 

so that both GL(n, C) and Sp(n, ~) have the same maximal compact subgroup 
U(n), and a manifold admits a symplectic structure (and hence commutator) 
if it admits a complex structure. This led to the idea of generalized commuta- 
tion relations for nonlinear systems of the form 

[R (z), R (z')] + _~ B(z, z')I 

where R(z) is the field operator for the wave representation z and B(z,z') is a 
bilinear form that is symmetric or antisymmetric for Fermi-Dirac and Bose- 
Einstein fields, respectively (and the use of the Weyl form of the commutation 
relations in the latter case). In Segal's work the geometry is essentially 
Riemannian; however, for the present application pseudo-Riemannian geometry 
is involved. 

In comparing the light cone with these structures, the fundamental field is 
that of almost complex structures over space-time, M; these are in one-to-one 
correspondence with the elements of the homogeneous coset space 
GL(4, N)/GL(2, C) and convert the tangent space R 4 into a two-complex- 
dimensional space with respect to a given J E GL(4, R)/GL(2, C) by defining 
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scalar multiplication by complex numbers as 

(a+ib)X=aX+bJX, X E •  4, a , b E N  

I f J  is a complex structure on ~4, then there exist elements X 1, X2 of ~4 such 
that (X1, X2,JX1,JX2) is a basis for R 4. In particular the canonical complex 
structure Jo of R 4 induced from C 2 maps quadruples of real numbers (x a, x 2, 
y l , y 2 )  into (_yl _y2, x 1,x2), where z k = x k + iy k, k = 1,2, are coordinates 
of points in C z. In terms of the natural basis for R 4 the canonical complex 
structure Jo is represented by 1:) 
where/2 is the two-dimensional unit matrix. The real representation of the 
GL(2, C) subgroup of GL(4, R) commuting with Jo is given by 

where (A + iB) E GL(2,C) and A, B are 2 x 2 real matrices. 
Riemannian Hermitian metrics h(X, Y) are defined as Riemannian metrics 

g(X, I 0 invafiant with respect to J: 

{h(X, Y)} = {g(X, Y)ig(JX,JY) =g(X, Y) } 

There is then a one-to-one correspondence between the sets of Riemannian 
Hermitian metrics o n  R 4 for a given J and the elements of the homogeneous 
space GL(2,C)/U(2). The Hermitian metrics so defined are complex valued 
with respect to J and satisfy the three conditions below: 

(1) 

h(XlX1 +X~X2, Y)=Xlh(X1, Y) + X2h(X2, Y), XI,X2 EN,  Xi, Y E N  4 

(2) h(Y,X) ---h(x, Y) 

where the bar denotes complex conjugation 

(3) h(JX, Y) = ih(X, Y) 

h(X, Y) can therefore be spliLinto real and imaginary parts that are symmetric 
and antisymmetric, respectively: 

h(X, Y) = S(X, Y) + iA(X, Y) 

S(X, Y) = S(Y, X),A(X, Y) = -A(Y,  X) (3.1) 

A(X, Y)=-S(JX,  Y) 

Since the space A 2 (R 4.)  of exterior 2-forms over R 4 is isomorphic to the 
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space of all antisymmetric bilinear forms over •4 there is an almost symplectic 
form, the almost Kahler form, corresponding to A(X,  Y) .  It is this decomposi- 
tion that forms the geometric basis of Segal's quantization scheme when applied 
to an infinite even dimensional phase space instead of ~4, with creation and 
annihilation operators C(z) and C*(z) defined by 

C(z) = (1/~/2) (z - iJz), C*(z) = (a/x/~) (z + Uz) 

In the case of a Riemannian structure the metric defined by the reduction 
GL(4, R ) / 0 ( 4 )  is not sufficient to determine the Hermitian structure, which 
as a U(2) structure is not covariant with respect to 0(4);  however, for the 
pseudo-Riemannian geometry of general relativity this difficulty no longer 
O c c u r s .  

For this the metrics are determined by the reduction GL(4, R)/O(1,3) 
and the components gu~, defined through the pseudosymmetric vierbein {La~ } 

where by pseudosymmetry is meant the relation 

and ~2ab is the Minkowski metric (1, - 1 ,  - 1 ,  -1 ) .  
For the Riemannian case the {Lau} can be used as coordinates on 

GL(4, R)/O(4) corresponding to the unique polar decomposition of GL(4, ~)  
as the product of a positive symmetric matrix with an element of the maximal 
compact subgroup 0(4) (Chevalley, 1946), but for GL(4, N)/O(1,3) this is 
only locally valid (Isham et al., 1971 b) and is an example of the general non- 
uniqueness problem, emphasized by Joseph and Solomon (Joseph and Solomon, 
1970), associated with nonlinear realizations of a group G on a homogeneous 
coset space G/H when H is noncompact. 

The reduction GL(4, R) /GL(2 ,C)  is the same as before, but the pseudo- 
Hermitian metrics are given by GL(4, ~ ) / (GL(2 ,  C) r3 O(1,3)) ~ GL(4, N) /SL(2,C) ,  
i.e., by the reduction of the bundle of linear frames to that of unimodular complex 
linear frames. Since in general relativity SL(2, C) appears as the structure group 
of the bundle of spin frames we consider the relationship between complex 
structures and Penrose spinors. The latter are determined by a real null direction 
and a phase angle, so the correspondence is defined essentially by a Wick 
rotation iX 4 ~ X 0 converting complex unit vectors z i (i = 1,2) into null vectors 
of the local flat space metric, and complex coordinates into null coordinates 

~VZ2Z 1 =X 3 +ix 4 ~ x / ~ l  ~ =X 3 +X 0 

x/-if I = x 3 _ i x  4 + ~ n  u = x 3 _ x o 

x /2z  z =x  I +ix z ++x/2m u =x  t +ix 2 (3.2) 

~¢/~2 =x 1 _ i x  2 ++X/~u  = xJ _ i x  2 

This differs from the Penrose formalism by the orientation of n u, where the 
q u, n U m u, m u) constitute a null tetrad, each x u being a four.component vector 
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that is related to a spinor basis (n, 0 of SL(2,C) by 

l N = a~2KBg X 

n" = O~yctBT x 

m "  : x 

m ~ = O~32tBg X 

where bar denotes complex conjugation and dot indicates a dotted spinor, 
whilst l N and n u are real null vectors. The present approach differs by replacing 
the 16 components of cr~.g by the 8 components J~.g determining a 
GL(2,C) basis and the two components of GL(2,C)/SL(2,C), so that the 
resultant spinors transform nonlinearly under GL(4, •), but the equivalence of 
linear and nonlinear spinors has already been shown (Isham et aI., 1971 b). 

In the Penrose spinor formalism the metric components can be expressed 
as 

. .  BCb g.~ = eAceBDo~, ov (3.3) 

where eAC is the Levi-Civita symbol and is antisyrnmetric. In the nonlinear 
realization approach the second factorization, GL(2, C) -+ SL(2, C), can be 
effected linearly by the two elements {p, e/~} of the multipticative group of 
complex numbers C* since they commute with the whole of SL(2,C); hence 
the pseudosymmetric vierbein {L~a) can be expressed by 

{L ~a} = peiO J~2, 

Dotted and undotted spinors transform in the opposite sense under e i~, and 
co- and contravariant indices contragrediently under p, so 

g, tw = P-2 eA CGBfgj 2 f3jfi) (3.4) 

is the nonlinear spinor expression for the metric. The invariance of guy under 
the phase transformations corresponds to the required hermiticity, and has 
previously been noted by Lubkin (Lubkin, 1963) who suggested a tentative 
identification of the se operations with the U(1) group of electromagnetism, 
whilst Weyl's unified theory employed invariance under P. 

The two-valued nature of spinors, which is obscured in the use of complex 
tensors, results from the isomorphism SL(2, C)/Z2 ~ SO(l,  3) so that the 
"rotation through 2rr" occurs when ~ takes the value 2rr in GL(2, C) and has 
real generator J in GL(4, R). Also bothJ  and the conjugate complex structure 
- J  determine the same reduction of GL(4, ~) to O(1, 3), whilst in SL(2, C) the 
roles of dotted and undotted spinors are interchanged, so if J-charge is defined 
to be the number of undotted spinors minus that of dotted, then J-+ - J  
induces J-charge conjugation. 

Closer comparison of this with the Newman-Penrose treatment of general 
relativity (Newman and Penrose, 1962) and with SL(2, C)covariant flat space 
field theory requires extension of the usual little group classification from 
R4@ SL(2, C) to GL(2, C) and GL(4, ~). The induced representation method 
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TABLE 1. Little groups. 

Type of orbit Little group in GL(4, N) Little group in GL(2,C) 

(1) m z = O, p = 0 GL(4, R) GL(2,C) 
(2) m 2 > 0  GL(3, ~)  U(2) 
(3) m z = O, p 4= 0 GL(3, IR) F 
(4) m 2 < 0 GL(3, R) U(1, 1) 

of Mackey involves the use of representations of R a @ K, where K is the little 
group for a representative point on the orbits of the homogeneous group, G, 
on the character space ~4 of N 4, followed by extension of the representation 
to the whole group by allowing the latter to act transitively on vector functions 
f(g) on G with values in the Hilbert space of the representation o f R 4 @ K 

g' : f (g)  --, f (gg') ,  g, g' ~ G 

The points at issue here are first what happens to the SL(2, C) orbit classifica- 
tion as the group is enlarged, which is given in Table I, and second the lack of 
manifest SL(2,C) covariance of the representations. 

If a free field if(x) is constructed in flat space from creation and annihila- 
tion operators for zero-mass helicity-two particles 

( a3P ipx ~(x) =J~-o {e a(p)~(p) + e-;Pxb+(p)~(p)t 

where a(p) and b+(p) are creation and annihilation operators and ~(p) is 
manifestly covariant 

~(p) g-, S(A)t)(pA)eiP'a 

where g = (a, A) E I~ 4 @ SL(2, C) and S(A) is a finite-dimensional representation 
ofSL(2, C). In general S(A) is arbitrary and contains subsidiary components 
that must be projected out by contraction with the momentum vector (Fierz, 
1939), leading to the free field equations as a criterion of irreducibility; how- 
ever, even then the different S(A) may behave differently in presence of inter- 
actions. Instead of this, which in the case of quantum gravity leads to the 
reappearance of the lower spin quanta in closed loop diagrams for a Lorentz- 
invariant and unitary S matrix (Feynman, 1963; de Witt, 1967), with formal 
justification by the Faddeev-Popov method (Faddeev and Popov, 1967), it is 
possible to use the Weinberg approach of starting with irreducible wave 
functions 0Veinberg, 1964a), avoiding the need for free field equations. Weinberg 
showed that manifestly SL(2, C)-covariant wave functions could be constructed 
from creation and annihilation operators for zero-mass helicity-X particles only 
for SL(2, C) representations (]'1, ]'2) satisfying ].2 - ]t = X as a result of the lack 
of semisimplicity of the relevant little group E(2), and that use of  the (1, 1) 
representation for gravity led to Lorentz invariant S-matrix elements for soft- 
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graviton scattering only if universality of the coupling was also assumed, 
whilst the actual wave function was not manifestly covariant. If the geometric 
interpretation is assumed, as here, to be more fundamental than the idea of 
zero-mass gravitons, then the manifest Lorentz covariance of the field is 
essential and consideration of the spinor field equations of general relativity 

KTABC' D' = dPABC' D' + (3A - ½ C)eABeC'D ' (3.5) 

shows that it is the (0, 0) and (1, 1) parts of the gravitational field, A and 
gPABV'D', that must be quantized, where K is a measure of the gravitational 
coupling and TABC'D' the energy-momentum spinor. The Weyl spinor of type 
(0, 2) G (2, 0), on the other hand, does not obviously require to be quantized, 
although it is it that describes the free gravitational field. 

The usual SL(2, C)-invariant classification of orbits does not extend to 
GL(4, R); the distinction between massive, massless, and tachyonic orbits is 
preserved by R x SL(2, C) and for Hermitian energy vectors by GL(2, C), but 
in discussing mass it is then necessary also to consider the tensor Tif given by 
derivation by OiO ] instead of  just[32 . Further extension of the group changes 
J, in particular if the velocity of light is regarded as a conversion factor between 
units of space and time it will be changed, thus giving space-time a variable 
refractive index, and extension also mixes all nonzero momentum of the same 
4-orientation under GL+(4, R) and the orientations themselves in GL(4, ~). 
The usual distinction between positive and negative energies requires both an 
overall 4-orientation (sign of the dilaton) and a separate time orientability of 
fiberings V 3 x R I of  space-time defined by a globally timelike Killing field, of  
which only the former is necessary for the existence of an almost complex 
structure J. The discrete operations P and T can be described in terms of  
changes of these orientations, and if it were correct to identify the U(1) gauge 
group of electromagnetism with that generated by J then CPT would be 
entirely geometric in origin; however, such a simple identification leads to 
incorrect charges. 

In Table I F denotes the group of triangular matrices 

If this classification is used as the basis for a "quantization" of gravity, then 
case (1) of zero-energy-momentum particles corresponds most naturally to 
classical geometry. There are no gauge constraints resulting from the little 
group classification, no distinction is made between past and future, and 
quantization consists of the analysis of geometric objects in terms of their 
holomorpt~c and antiholomorphic constituents with respect to a given 
complex structure J (if J is integrable). Propagation of gravity is described 
classically in this case by the hyperbolic field equations, whilst nonlinearity 
means that gravitons for different J are not simultaneously countable (physically 
they correspond to different systems of causality and measurement), and in 
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fact arbitrary J anticommute with the canonical complex structure Jo in the 
matrix representation. 

The three other cases are more physical as they have nonzero energy 
momentum, and the first question to consider is the actual definition of this 
quantity in curved space-time. That adopted in the fiber bundle approach is 
the local flat-space definition using the affine fibers R 4 and ~4, so that geo- 
metrically the energy-momentum vector contributes to a choice of  coordinates 
and hence to gu~ only through the constraint variables. 

As in the ADM technique a (local) 3 + 1 decomposition of the gravitational 
field is made such that the 3-metric hi] (1 ~< i, j < 3) is given by 

hii = {t~;} {l~j} 

where (la} is the restriction of {/~} to the appropriate GL(3, N) subgroup. 
Here the GL(3, N) subgroup is the little group of some vector {NU}E [~4 with 
fiat-space components N u = 6 uu for some specific v, 0 ~< v ~< 3, whilst in the 
ADM technique the reduction guu ~ hii is achieved by the choice of the four 
components of the constraint vector {(_g0o)-I/2,goi } describing how to pass 
from one hypersurface (usually spacelike) to another by paths that are time- 
like, lightlike, or spacelike according to the length of the constraint vector; 
the gauge problem of ADM is then to find a coordinate condition reducing the 
six components of h/] to two helicity states in a Lorentz-covariant fashion. 
The usual requirement that h/] be transverse and tracefree is not manifestly 
Lorentz covariant, but corresponds in the covariant quantization scheme to 
inclusion in the Lagrangian of the Lagrange multiplier gauge-breaking terms 
Aih]~ j and Bhii (subject further to the Faddeev-Popov constraint for formal 
quantum gauge invariance) giving rise to the fictitious particles in closed loops. 
In the classical ADM approach the constraint vectors themseNes appear in the 
Lagrangian as multipliers and have the physical significance of determining how 
a given coordinate system will be continued off a t = const hypersurface. 

In the fiber bundle approach the first requirement is that the little group 
o f N  ~ in GL(2,C) also be contained in the correct GL(3,[~) subgroup, which 
means that if the 3-hypersurface is to be spacelike, then N ~ must be timelike 
with respect to the given J. A nonlinear [with respect to GL(4, R) transforma- 
tions] graviton is then determined by a momentum vector in the direction of 
N ~ with energy scaled by p, and the single component of U(2)/SU(2) left in 
the reduction GL(2, C)/SU(2) using the choice of determinant and boost as 
above. Owing to nonlinearity this graviton is coordinate dependent; however, 
by the usual theory of constraints the extrinsic geometry of the hypersurface 
is independent of the choice of constraint vector, and hence in this model also 
independent of the momentum vector. Manifest general covariance requires 
the use of linear representations, i.e., tensors and tensor densities induced 
from U(2) acting on the appropriate orbit in ~4  Instead of the six compo- 
nents of hi] there is just a U(2) tensor of type (1, 1) corresponding to the 
Euclidean metric which transforms under SU(2) as a spin-2 object since 
dotted and undotted spinors are equivalent in that group. Lorentz covariantiza- 
tion is achieved by the Wigner boost and gives tile Minkowski metric, so that 
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the curvature comes entirely from the scalar ditaton field and the complex 
structure JuB; ?. The dilaton can be quantized as a massive, massless, or 
tachyonic scalar with respect to lightcones compatible with J according to the 
constraint vector to be used, and physically the choice will depend on the type 
of matter contributing to Tuv, but in any event the noncommutativity of  
different J means that the GL(4, R) covariant theory will always contain an 
uncountable number of  off mass-shell dilatons. 

The usual approach to gravity treats the free graviton as a zero-mass particle 
determining the conformal structure of  space-time, so we consider the above 
model from this point of view and its relation to a Penrose spinor. As a G 
structure a conformal structure is a CO(l ,  3) structure and hence determined 
through the pseudosymmetric vierbein by {LUa}/Det (L~a} or the pair (d, qS). 
The case of a lightlike graviton can be described as a Penrose spinor if the scale 
factor p is absorbed into the definition of the energy, the elements {0, qS) of 
FIE(2) ~ C* being related to the phase and magnitude of the spinor by 
comparison of the little group classification with the null rotations for a real 
null direction l u. Given a pair of SL(2, C) spinors (~A, ~A) such that 

~:A c~ = 1 +~ eAB = KA LB -- tA KB 

the most general transformations of this basis which preserve the real null 
direction of ~ A are the null rotations (Pirani, 1964) 

i¢ A -+ g tA = Nf fe iO/2gA 

LA _~ { A = (1/~/~eiO/2)(tA _ rBKA) 

where r, 0 ~ R; r > 0 and B E C. These elements form a four-parameter sub- 
group of SL(2, C) consisting of triangular matrices 

(; 
where z = (rei°) 1/2, with the restriction !zl = 1 giving the energy.preserving 
zero-mass little group E(2); the phase e i° is the generator of  the helicity 
subgroup SO(2) of E(2). Extending the null rotations from SL(2,  C) to GL(2,C)  
introduces the two elements {p, 0} such that 

tea _+ K'A = (pei4,) l12 ~A 

L A --~ C A = (pe i4 ) ) l /2 tA  

whilst dotted spinors transform by the complex conjugate, and lower index 
spinors in the opposite sense under P- Of the two phase transformations e i° 
and e ie it is the latter that is required if the spinor is to provide an invariant 
definition of angles and hence the conformal structure. The difference between 
a lightlike vierbein graviton and a Penrose spinor is thus that the former trans- 
forms according to the adjoint representation of C* ~ GL(2, C)/SL(2,  C) 
and the latter by spin 1/2, whilst restriction from GL(2,C) to SL(2,C) renders 
the phase arbitrary. Physically this graviton is a Goldstone boson complex 
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scalar particle (p, 4) with momentum vector corresponding to a real null 
direction. The Segal type of quantization can be used to define formal creation 
and annihilation operators C*(z) and C(z) for null vectors z: 

c ( z )  = (z + iJz),  c * ( z )  = (z - iJz) 

[C(z), C(z')] = 0 = [C*(z), C*(z')] (3.6) 

[c(z) ,  c*(z ' ) ]  = A(z ,  z ' )  

where A(z, z') is the imaginary part of the Hermitian metric. The "number 
operator" C(z) C*(z) is therefore quantized in multiples ofp z, the square of 
the basic unit of length defined by the dilaton, and this will be discussed 
further later on in relation to points as quanta of space-time. In addition the 
field equations of general relativity require that p itself be quantized as an 
orthodox scalar field with causal function characterized by a specific J,  whilst 
J remains classical, and the usual Planck's constant. 

4. Quantization of Space-Time 

In this section we consider more fully the quantization of space-time briefly 
mentioned at the end of the last section. Tile quantization of the vector space 
structure of the tangent space Tx(M) at some point x E M  in terms of creation 
and annihilation operators obeying (3.6) simply describes the theory of 
measurement when a finite unit of length is introduced in a Lorentz-covariant 
fashion. This quantization differs slightly in form from the ordinary commutation 
relations since the right-hand side is no longer a delta function, and this gives 
modified commutation relations between the number operator and those for 
creation and annihilation: 

IN(z), C(z')] = C(z)A(z, z') 

IN(z),  C*(z ')]  = - C * ( z ) A ( z ,  z ' )  

so that except in the local flat-space metric orthogonal vectors m'e not simul- 
taneously countable, and for that case the formalism resembles the indefinite 
Hilbert space metric quantization of a zero-mass vector field. 

The preceding commutation relations are in the Fock space form, but to 
see the corresponding uncertainty relations we use the well-known Bargmann 
(Bargmann, 1961) approach to obtain the appropriate Schr6dinger representa- 
tion. Here the Fock function space q~ is that of entire functions on C 2 and the 
Schr6dinger representation space is L z(•z, tl) where/1 is the two-dimensional 
volume element induced by the metric. The problem considered by Bargmann 
was first to find a positive real function F(x,y) defining an inner product in 
Fock space and a kernel B2 (z, q) defining a unitary mapping of the Schr6dinger 
representation space onto that of Fock such that 

(f,g) =f f(z)g(z)F(x,y)d2z, f,g@ cb 

f(z) =fB2(z, q)~(q)d2q ~(q) E L 2(l~2, d 2q) 
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The adjointness of creation and annihilation operators requires 

(zg.[i g) = (f, ~g/~zk), 1 <~ k <~ 2 

leading to a suitable F ( x , y )  as 

F = c exp( -~  . z), zk = xk + iyk 

where c is a constant. From another adjointness condition Bargmann obtained 

Bz(z, q) : c' exp {-½ (z 2 + q2) + W/~z. q} 

with convenient choices of c and c' for the two-dimensional case as rr -2 and 
7r -1/z respectively. 

In terms of the canonical complex structure Jo (2.2) the set (q} may be 
taken as (x 1, x 3) and ~p}, the canonical momenta" as (x 2, x °) leading to the 
Heisenberg uncertainty relations 

Aqi . Api ~ p2 

showing that in quantum geometry measurements in directions conjugate with 
respect to the complex structure defined by the light cone must be liable to an 
error at least as great as the basic unit of  length; the classical limit p = 0 is 
simply the case of an infinitesimal unit of  length. 

The quantization of curved space-time is equivalent to construction of 
Bargmann-Segal quantum field theory on each fiber apart from the change to 
an indefinite metric, with the construction varying from point to point as J 
and p vary over the base space of the fiber bundle. The vacuum is characterized 
by the Gaussian distribution F ( x , y )  on C 2 with mean square deviation deter- 
mined by the dilaton field as p 2. The theory of principal vectors constituting 
an orthonormal basis for the Hilbert space of square integrable complex 
functions over C 2 is just the classical theory of the Bergman kernel in this 
case. 

Intuitively it appears plausible that a point should be the basic particle of 
quantum geometry and that it should have the property of either existing or 
not existing, and hence obey Fermi-Dirac statistics with a field of  creation and 
annihilation operators for points defined everywhere in space-time. Such an 
approach is possible since according to Caftan (Caftan, 1938) a point of a 
three-dimensional Euclidean space can be regarded as an isotropic vector {x i} 

( x l )  2 + ( x 2 )  2 + ( x 3 )  2 = 0 

Clearly this has only two degrees of  freedom, ~1 and ~z, which may be chosen as 

~1 = +_ /~1 +ix22 

~2 = + / - ~  ix 2 

2 
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The pair (~1, ~2) then transform under rotations according to the spin-l/2 
representation of SU(2). This definition depends on both a Euclidean metric 
and a complex structure and these must be consistent with the metric and 
almost complex structure for space-time. In curved space-time this construction 
is carried out by choosing a vector that is timelike with respect to the local 
light-cone structure on Tx(M) and taking the 3-space as a hypersurface in Tx(M) 
orthogonal to that vector. Quantization in terms of points is therefore 
equivalent to quantizing sections of  the fiber bundle with structure group 
SU(2) where the reduction GL(2, C)/SU(2) is determined by choice of a time- 
like vector in Tx(M), a particular phase angle ¢ and a scale factor, which is 
neither Lorentz covariant nor J covariant. Lorentz-covariant quantization 
can be carried out in the orthodox manner by postulating anticommutation 
relations for creation and annihilation operators for (~1, ~2) parametrized by 
the direction of the normal to the hypersurface and covariant under Wigner 
boosts; however, for the Segal approach it is necessary to use 3' matrices. 
Parity-conserving four-component spinors are obtained in this theory by 
forming the direct sum of the space C 2 used earlier with that of a second C 2 
with opposite orientation of the 3-subspace of  the corresponding real space 
~4; and if the sign of the dilaton (4-orientation) is to be preserved, then change 
of spatial orientation must be accompanied by a reversal of the direction of 
time. The 3' matrices can be expressed in terms of the o matrices defined via 
isotropic vectors, e.g., through the Weyl representation 

where 1 is the two-dimensional unit matrix. These 3' matrices, however, trans- 
form nonlinearly under GL(4, R) since the quantity i has the real representation 
J, and in this the theory resembles an attempt to remove the ambiguity of i in 
the Dirac equation by defining it through the pseudoscalar of the real Dirac 
algebra (Hestenes, 1967), The {%} form a basis for a four-real-dimensional 
space that can be quantized in terms of eigenstates of J by the Segal technique: 

c(3' , )  = (1 /v~)  (3', - ~3',) 

c* (3 'p  = (1/~/~) (3'. + ~t3'~) 

which has the effect of transforming the anticommutation relations 

{3',. 3'.) = 2&. 

into the canonical tight-cone form 

{T+, 3 ' -  } = p -2 f ]+_ ,  {3'i, 3"7} = P-217i[ 
where the Minkowski metric 77 is in off-diagonal form with only the two indi- 
cated terms (and their transposes) being nonzero. Dependence on the scale of  
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length is eliminated to give a pure number operator if particle-antiparticle 
conjugation is extended to include co- and contravariance: 

The approach here differs slightly from that of Hestenes, where that author 
attempted to interpret the phase of a real Dirac spinor as defining a mixing of 
particle and antiparticle states with phase angles 2mr and (2n + 1)7r denoting 
the respective pure states and thereby avoid the need for second quantization; 
that result was in conflict with the superposition principle of quantum mechanics, 
and here it is apparent that it is the sign of the eigenvalue of J that distinguishes 
between particles and antiparticles rather than the phase angle. 

As with the Bose-Einstein case the vacuum can be characterized by a 
distribution of variance t) 2, but for the spinors the real Hilbert space is the ~4 
of the 3, matrices embodying both parities and the distribution D skew- 
symmetric, i.e., a Clifford distribution (Segal, 1956) 

D(~)D(~I) + D(~I)D(~) = 202r~(,~, ~1), ,~, g l C R 4 

Canonical position and momentum operators act on the space L 2 (~4,D)by 
left multiplication by D(~)/x/~p and by iD(~)/x/~p followed by the automor- 
phism of L2(R 4, D) induced by reflection in a hyperplane orthogonal to ~, 
respectively. 

Instead of describing points as isotropic vectors it is also possible to define 
them geometrically in terms of pairs of twistors (Penrose, 1968), so a twistor 
analog of the present argument is given using second-order G structures 
(Kobayashi, 1972). Selecting a flat hypersurface with isotropic vectors defined 
by points a M6bius construction can be carried out so that O(1,4) is the 
resulting M6bins group, which is covered by the symplectic group Sp(1, 1) 
whose generators can be constructed out of pairs of creation and annihilation 
operators. The 3-D analog of twistors are basis vectors for the lowest spin 
representation of the latter and can be subduced from the twistor group 
SU(2, 2) which covers the M6bius group 0(2, 4) of the four-dimensional 
space. When a base space is defined prerelativistically there is little advantage 
in using twistors, and their geometric significance is that, subject to a 7/4 
cohomological consistency condition, they define fields of conformal spinor 
connection coefficients corresponding to the reduction G2(4)/0(2,4) of the 
second-order frame bundle, where 

G2(4) =_ {ai aik,i . aii@ GL(4, N),a~ic = a~ i} 

5. Application o f  Kostant's Technique to General Relativity 

In this section we consider the application of Kostant's technique of quantiza- 
tion (Kostant, 1970a, b) to general relativity. This approach is intimately related 
to that of the previous section, but whereas the Bargmann-Segal quantization 
only required almost complex and almost Hermitian structures leading to a 
generally covariant form of quantum mechanics, for Kostant's method 
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integrability is required to give a K/ihler manifold structure; physically this is 
clearly necessary for a field quantization to be invariant under parallel trans- 
port. 

Essentially Kostant extends the process of quantizing functions representing 
classical mechanical properties on a homogeneous symplectic G space and uses 
it to classify representations of the group G. I f F  is a space of functions over a 
manifold M with symplectic structure f2 where the functions form a Lie 
algebra under the Poisson bracket operation, then quantization results from 
using the 2-form ~2 to define a map from F into the space of vector fields 
on M. If f, g E F are function on M with P, B {f, g} then the corre sponding 
quantum operators are Xf and Xg, where 

-Lx a = d;  (S.1) 

tx denotes interior multiplication by X, and 

{;, g} = % ' L x ~  = 2a(Xf, :~g) (5.2) 

The mapping f-+ Xf defines a Lie algebra homomorphism whose kernel consists 
of the constant functions, and for the example to be treated here it is related 
to the vacuum state. In addition Kostant imposes the Bohr-Sommerfeld type 
of integratity condition that the 2-cocycles onM with respect to ~2 must have 
integer values, corresponding to the condition that ~ be the curvature form of 
some line bundle, which in general requires certain cohomology conditions to 
be met (Kostant, 1970b). For the case of general relativity a principal line 
bundle with structure group GL(2, C)/SL(2, C) arises naturally leading to 
integrality when the symplectic form is taken to be the curvature form of this 
bundle, i.e., the Ricci form, whilst the homogeneity condition must be 
dropped if the results are not to be trivial physically. 

The requirement that the almost complex structure J be integrable means 
that its Nijenhuis torsion N(X,  Y) must be zero, which is automatically satis- 
fied if the ordinary torsion T(X, Y)  of the almost complex connection is zero 
by virtue of the relation (Kobayashi and Nomizu, 19.70) 

T(JX, JY)  - J(T(JX,  Y)) - J(T(X,  IT)) -- T(X, Y) = - ½N(X, Y) 

so for general relativity, but not the Einstein-Cartan theory, there is no loss of 
generality in assuming integrability. 

If a scale of length is to be everywhere defined, the function determining 
the gravitational field when restricted to the line bundle must be nonvanishing, 
and if complex analyticity is fundamental to quantization, sections of the 
bundle must be holomorphic. IfA denotes the sheaf of germs of holomorphic 
functions, A * that of nonvanishing holomorphic functions, and Z that of 
integers, then there is an exact sequence of sheaves 

exp 
O~ Z + A ~  A* ~ I 



GEOMETRY AND QUANTIZATION 445 

(and similarly for real 1-forms) where exp: f ~  exp (27r i l ) , fEA ,  and there is a 
corresponding exact sequence of cohomology groups 

~ HI(M,  7/) ~ H I ( M , A )  ~ H I ( M , A  *) -+ H2(M,Z)  ~ . . . 

where M denotes the base space of the bundle. The cohomologicaI equivalence 
classes of gravitational fields having a given J (conformal structure modulo a 
phase factor) correspond by definition to the elements o f H  1 (114, A*). In the 
worl~ of Hestenes (Hestenes, 1967) an attempt was made to define a scale of 
length through spinors describing matter, but this led to difficulties through 
the implicit use of elements of H 1 (M, 14) instead of Hi(M, A*). Since A is 
known to be a fine sheaf, i.e., 

H q ( M , A )  = O, q >1 1 

the equivalence classes are uniquely determined by their images in H2(M, 7/), 
the first Chern class. In the particular case of a K~hler structure the Ricci 
2-form is exact, so that the line bundle is a product bundle and use of coho- 
mology is unnecessary; however, this would not be so for the more general 
situation considered in the previous section. The Ricci form, S, of  a K~ihler 
manifold is given in the local geodesic coordinates which naturally exist in this 
case by 

s = R # z  A 
t, 1 

where 

Rii = (1/2 0 ; 7o 2 

and 0, which is real, is just the scale of length. 
Kostant uses the Ricci form where nonvanishing, as the symplectic form 

fZ in (5.1) and considers only the quantization of real functions, which for 
classical mechanics where M is phase space involves no loss of generality since 
observables are assumed to be real, whereas for the present application physical 
reality corresponds to hermiticity. Kostant obtains a commutative diagram of 
Lie algebra homomorphisms 

0 "+ R H ( M )  -+ 0 

where R denotes the real constant functions on M, C g ( M )  the real smooth 
functions on M, H(M)  the vector fields on M that are globally Hamiltonian 
with respect to ~2, and 

( [77 is a real vector field on the line bundle L such ] 
e(L, V) = { ~1 that the connection 1-form ¢o and p= are invariant} 

] along the flow of 7, and r/is invariant under 12" ) 
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where V denotes covariant differentiation corresponding to oo, and L has 
structure group GL(2,C)/SL(2,C) ~ C*, where C* ~ C -  {0}. The locally 
Hamiltonian vector fields e(L, V) are equivalent to C~(M) as a central exten- 
sion of H(M): for ff E C=~(M) and ~¢ E e(L, V) 

~(x) = - (co, n~)v, x E M ,  vEL~(x)  

which by C* invariance of ~7 is independent of v. The map (5.1) $ ~+ ~, ; 
E C=~(M), ~ EH(M) defines an action of ~ on the space P(L) of sections 

of L by covariant derivation. Because of curvature this does not lead directly 
to a structure of P(L) as an H(M) module, so Kostant defines prequantization 
as 

5 : C=~(M) -+ End P(L) 

8 : ffs ~(V~¢ + 2rri~k)s, s E P(L), ~ E Ce~(M) (5.3) 

which does preserve the symplectic form, as also does the classical action of the 
functions 

(~s) (x) = ~(x)s(x) 

For Kostant's quantization it is necessary to make P(L) into a Hilbert space 
and to separate the action of derivation from multiplication by ff in (5.3), 
which is achieved by the process of polarization. In the trivial case of 
M -  gR 4 ~ C 2 with the natural K/ihler structure prequantization is unnecessary 
and the theory of  P(L) as a Hilbert space is just the well-known Bergman 
kernel theory. 

A polarization (Kostant, 1970b) is a C = choice o fa  subspace F x of the 
complexified tangent space TxC(M), V x E M  such that the following conditions 
hold: 

(1) Fx is a vector subspace of TxC (M) that is maximally isotropic with 
respect to g2x, i.e., 

(2) 
ax(N,N)=0 

UF(M ) = {~ E U(M)':~ x EFx, Vx EM} 

is a Lie subalgebra of the algebra U(M) of complex vector fields on M. 
(3) Dim (F~ fq fix) = k, where k is a constant for all x,  and the bar denotes 

complex conjugation. The actual choice of Fx is such as to give a set of  direc- 
tions {~x } E Fx in which the covariant derivative vanishes, but usually the 
choice is not unique, leading to a major equivalence problem solved to date 
only for a few special cases, e.g., different real polarizations (Blattner et al., 
1974). 

Direct application of Kostant technique to space-time corresponds to 
taking Tx(M ) as R 4 , complexifying it, and looking for a line bundle to use in 
quantization, but in the present approach the complex structure is defined 
nonlinearly via the reduction GL(4, R)/GL(2,C), and the assumption that 
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quantization is a form of analyticity corresponds to a particular choice of 
polarization of the real tangent space Tx(M), namely, the K~/hler polarization, 
which satisfies F x n F x = 0. Using the local geodesic coordinates vanishing of 
the covariant derivative in this case is just the vanishing of the derivative of a 
holomorphic function with respect to an antiholomorphic vector field. The 
polarization problem in this case amounts to showing the equivalence of the 
Fock space and L2(R 2, dx 2) representations mentioned earlier, which is 
achieved for local fiat space by the Bargmann-SegaI work (Bargmann, 1961). 

To make the global sections F(L) into a Hilbert space it is necessary to 
introduce the complex volume element leading to a sign ambiguity in taking 
its square root. In the Kostant theory a bundle B F of bases o f F  is defined as 
a principal fiber bundle over F with structure group GL(n, C) where n = Dim 
F, which for the present application is the bundle used from the outset with 
n = 2, and a double/~F, the metalinear frame bundle, ofB F corresponding to 
the sign ambiguity in taking the square root of  the determinant in GL(n, C). 
A space of half-forms L~x 

r F -~ {v . ~ F  _+ CIv(bg) =x(g)-lv(b)}, Vb  e B  F 

is defined and used to form a line bundle L F of half-forms 

L F= U 
x 6 M  

The wave functions W F of the quantum theory are taken to be square integrable 
functions @, where 

For the existence of the double covering )~F it is necessary that H2(JEf, 7/2) 
vanish (Simms, 1974). For general relativity the sign ambiguity is that which 
appears in the transformation of spin-t/2 objects under dilatations (for a fixed 
sign of the dilaton) and which appears in flat space theory in the definition of 
the energy as the square root of  the rest mass. Geometrically it appears in the 
global existence condition for a spinor structure (Lichnerowicz, 1968) resulting 
from the exact sequence of sheaves of local sections corresponding to 

0 --> Z2 -> SL(2, C) ->P 0(1 ,.___3) --> 0 

P* ~ 2 ~Ha(M, SL(2,C)) -+ HI(M,O(1,3)) H (M, Z2)-> 

where 6" is induced by the coboundary operator. If  E @ H 1 (M, O(1, 3)) corres- 
ponds to a spin structure S 

E=p*S 

then 8*E = 0 since the sequence is exact, thereby requiring the vanishing of 
the second Whitney class. In a physical interpretation this is necessary for a 
global distinction between particles and antiparticles. 

The curvature tensor of  L for general relativity is the Ricci tensorRi] and 
can be expressed directly in terms of the Penrose curvature spinors A and 
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CI)ABC' D' for the same complex structure 

Ri7 "~ 6AeAB eC'D' -- 2c~ABC'D ' 

whilst L ® L F involves the dual of the curvature. The Hamiltonian vector fields 
are those that preserve Ri7 and J, the latter being an extremely restrictive 
criterion, and they will only exist for problems having some symmetry. In the 
trivial case of flat space all vector fields are Hamiltonian for the K/ihler form, 
and Kostant's theory can be applied to give the usual representation theory of 
N4(X) SL(2,C), whilst more generally Killing vector fields can be considered 
but no global quantization is possible for a realistic matter distribution, and 
in that case the nearest approach is the use of asymptotic Killing vectors and 
representations of the BMS group. Alternatively the quantum mechanical 
approach of the previous section can be applied at each point of space-time 
and analyticity considered for the sections of L. Since momentum states are 
no longer considered the lack of commutation of dilatations with momenta is 
no longer a drawback to using representations of  GL(2, C). Homogeneous 
functions of degree (n 1, n2) are analytic if the difference (n 1 -  n2) is an integer 
corresponding to J-charge quantization, whilst if the scale function is also to 
be analytic n~ and hence n 2 must also be integral restricting representations to 
polynomials, i.e., the spinor representations. The contribution of massive 
spinors to the breaking of dilatation invariance can be carried out locally in 
the analytic case by expanding p as a function of the two complex variables 
(zl ,  z2) and (assuming the validity of ordinary quantum mechanics) taking 
the expansion coefficients as functions of the Compton wavelength of 
particles belonging to the appropriate representation present at that spot. 
Since Rif  defines the Hamiltonian form, other quantum numbers that can be 
assigned are those denoting eigenstates of gauge symmetries, and in particular 
of the generalized duality rotations of @AsCD' (Plebanski, 1964). 

For the case in which Hamiltonian vector fields do exist the Kostant tech- 
nique can be used to "quantize" the Ricci form Rifdz i ^ dz ] as a "quantized" 
differential form in the sense of Segal (Segal, 1968). The basic definition 
introduced by Segal is of a quantized differential form of degree k over a real 
linear vector space V equipped with a nondegenerate antisymmetric bilinear 
form g2 as a k-linear mapping from Vinto the Weyl algebra E over the pair 
(V, ~2), and a O-form is a member of E. For "the present application the defini- 
tion must either be extended to complex vector spaces, or else the Schr6dinger 
representation used for V as R 4 with the real polarization. In the latter case 
Ruv is a 2-form and Q is the K~ihler form on N 4 corresponding to the local 
light-cone, and the mapping (5.1) ~J ~ ~, maps the real values o f R ,  v into 
elements of the Weyl algebra using the given polarization. The Weyl algebra 
for this flat space is that obtained by Bargmann (Bargmann, 1961) in consider- 
ing the inhomogeneous unitary transformations of C n with n = 2 and amounts 
to writing the commutation relations in the Weyl form, whilst the Weyl algebra 
for the curved space amounts to the same thing for the Hamiltonian vector 
fields with respect to the Pdcci form. 
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6. Discussion 

The essential difference between the schemes of quantization considered 
here and in usual flat space theories is that the latter type of  theory is now 
defined vertically on the affine fibers isomorphous to N4 but not horizontally. 
Instead of defining creation and annihilation operators for global fields in terms 
of their Fourier components local creation and annihilation operators have 
been defined in terms of the almost complex structure at each point, so that 
in general the definition of a given type of particle varies throughout space- 
time. The Fock space at each point consists of entire functions of  two complex 
variables, so that states with a high occupation number are characterized as 
single-particle states of a high spin field. In this paper the precise relationship 
between the nonlinear spinor formalism and the description of field quanta in 
terms of momentum states has not been considered as it wilt be covered in a 
separate paper on the non-Lagrangian coupling' of matter to geometry. 

The whole approach of this paper depends on the existence of almost 
complex structures on space-time, and whilst the necessity of even dimension- 
ality and orientability have been pointed out, they are not sufficient existence 
conditions. For compact manifolds study of the homomorphism on cohomology 
rings induced by the mapping h : G(m, N, C) ~ G(2m, N, •) of Grassmann 
spaces defined by taking to an m-complex-dimensional vector space ofE, n +N(C) 
its underlying real vector space leads to the following existence conditions 
(Wu, i952): 

W i = 0 (i odd) 

(-1)iPi = ~ (-1)ici ~ c i 
O<<.i<~lm/2] O<<.i<~m O<~]<.rn 

where W i and Pi denote the Stiefel-Whitney and Pontryagin characteristic 
classes of the real vector bundle and ck the Chern classes of the corresponding 
unitary U(m) buncle. For space-time applications this leads to the incompati- 
bility of  the quantization scheme with an underlying S 4 topology. 

For the case of an integrable almost complex structure and quantization of 
sections of the line bundle an extreme limitation arises for compact manifolds 
from the fact that if a function is holomorphic it is necessarily a constant, 
rendering the whole quantization scheme trivial. 

In the covariant quantum mechanical situation of Section 4 there is no 
globally consistent quantization and both Nijenhuis and the ordinary 
torsion tensor wilt in general be nonzero, so that at a strictly classical level 
there is a problem over causality since for nonzero torsion causal structures 
deduced from congruences of null and timelike geodesics no longer coincide. 
The Ricci tensor for the line bundle L no longer has the simple KShler form 
but still corresponds up to a scale factor to the same symplectic structure 
as the light-cone. So its use as a Hamiltonian for general relativistic quantum 
mechanics seems plausible, in which case its eigenvectors as in classical 



450 D.J.R. LLOYD-EVANS 

gravitational radiation would feature as quantum states as well as bases for 
representations of  the generalized duality rotations; this together with the 
nonlinear spinors will be considered elsewhere in relation to unified field 
theories in the old Einstein sense. 

Finally since quantization has been presented here as a form of  analytici ty 
it  seems reasonable i f  the cont inuum is fundamental  to postulate the existence 
o f  fields that  are not quantizable in this way. Two aspects of  this arise, one 
the straightforward extension o f  the domain of  allowable representations of  
SL(2 ,C)  from polynomials  to  homogeneous functions lacking J-charge 
quantization and having in general infinite dimension, and the other  the 
possibility of  relating divergences of  the energy-momentum tensor to poles 
of  the complex scale factor.  
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